Artificial Intelligence System Reduces False-Positive Findings in the Interpretation of Breast Ultrasound Exams

Abstract

Ultrasound is an important imaging modality for the detection and characterization of breast cancer. Though consistently shown to detect mammographically occult cancers, especially in women with dense breasts, breast ultrasound has been noted to have high false-positive rates. In this work, we present an artificial intelligence (AI) system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound images. To develop and validate this system, we curated a dataset consisting of 288,767 ultrasound exams from 143,203 patients examined at NYU Langone Health, between 2012 and 2019. On a test set consisting of 44,755 exams, the AI system achieved an area under the receiver operating characteristic curve (AUROC) of 0.976. In a reader study, the AI system achieved a higher AUROC than the average of ten board-certified breast radiologists (AUROC: 0.962 AI, 0.924±0.02 radiologists). With the help of the AI, radiologists decreased their false positive rates by 37.4% and reduced the number of requested biopsies by 27.8%, while maintaining the same level of sensitivity. To confirm its generalizability, we evaluated our system on an independent external test dataset where it achieved an AUROC of 0.911. This highlights the potential of AI in improving the accuracy, consistency, and efficiency of breast ultrasound diagnosis worldwide.